
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )Certain aspects of some unitary quantum systems are well-described by evolution via a non-Hermitian effective Hamiltonian, as in the Wigner-Weisskopf theory for spontaneous decay. Conversely, any non-Hermitian Hamiltonian evolution can be accommodated in a corresponding unitary system + environment model via a generalization of Wigner-Weisskopf theory. This demonstrates the physical relevance of novel features such as exceptional points in quantum dynamics, and opens up avenues for studying many body systems in the complex plane of coupling constants. In the case of lattice field theory, sparsity lends these channels the promise of efficient simulation on standardized quantum hardware. We thus consider quantum operations that correspond to Suzuki-Lee-Trotter approximation of lattice field theories undergoing non-Hermitian time evolution, with potential applicability to studies of spin or gauge models at finite chemical potential, with topological terms, to quantum phase transitions - a range of models with sign problems. We develop non-Hermitian quantum circuits and explore their promise on a benchmark, the quantum one-dimensional Ising model with complex longitudinal magnetic field, showing that observables can probe the Lee-Yang edge singularity. The development of attractors past critical points in the space of complex couplings indicates a potential for study on near-term noisy hardware.
17 pages, 14 figures
Condensed Matter - Strongly Correlated Electrons, Quantum Physics, High Energy Physics - Lattice, Strongly Correlated Electrons (cond-mat.str-el), High Energy Physics - Lattice (hep-lat), FOS: Physical sciences, Quantum Physics (quant-ph)
Condensed Matter - Strongly Correlated Electrons, Quantum Physics, High Energy Physics - Lattice, Strongly Correlated Electrons (cond-mat.str-el), High Energy Physics - Lattice (hep-lat), FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
