
This is the first paper in a program concerned with the quantization of field theories which are covariant with respect to general coordinate transformations, like the general theory of relativity. All these theories share the property that the existence and form of the equations of motion is a direct consequence of the covariant character of the equations. It is hoped that in the quantization of theories of this type some of the divergences which are ordinarily encountered in quantum field theories can be avoided. The present paper lays the classical foundation for this program: It examines the formal properties of covariant field equations, derives the form of the conservation laws, the form of the equations of motion, and the properties of the canonical momentum components which can be introduced.
quantum theory
quantum theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 195 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
