Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PRX Quantumarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PRX Quantum
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PRX Quantum
Article . 2025
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

Quantum Simulating Continuum Field Theories with Large-Spin Lattice Models

Authors: Gabriele Calliari; Marco Di Liberto; Hannes Pichler; Torsten V. Zache;

Quantum Simulating Continuum Field Theories with Large-Spin Lattice Models

Abstract

Simulating the real-time dynamics of quantum field theories (QFTs) is one of the most promising applications of quantum simulators. Regularizing a bosonic QFT for quantum simulation purposes typically involves a truncation in Hilbert space in addition to a discretization of space. Here, we discuss how to perform such a regularization of scalar QFTs by explicitly constructing suitable many-body lattice Hamiltonians using multilevel or qudit systems and show that this enables quantitative predictions in the continuum limit by extrapolating results obtained for large-spin models. With extensive matrix-product-state simulations, we numerically demonstrate the sequence of extrapolations that leads to quantitative agreement of observables for the integrable sine-Gordon (sG) QFT. We further show how to prepare static and moving-soliton excitations and we analyze their scattering dynamics in the continuum limit, in agreement with a semiclassical model and with quantitative analytical predictions. Finally, we illustrate how a nonintegrable perturbation of the sG model gives rise to dynamics reminiscent of string breaking and plasma oscillations in gauge theories. Our methods are directly applicable in state-of-the-art analog quantum simulators, opening the door to quantitatively investigating a wide variety of scalar-field theories and tackling long-standing questions in nonequilibrium QFT such as the fate of the false vacuum.

Country
Italy
Keywords

QA76.75-76.765, Quantum Physics, High Energy Physics - Lattice, Quantum Gases (cond-mat.quant-gas), Physics, QC1-999, High Energy Physics - Lattice (hep-lat), Quantum Gases, FOS: Physical sciences, Computer software, Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold