<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We have measured the low-temperature (4.2 K) exciton lifetimes of zinc-blende CdTe nanocrystal quantum dots (NQDs), 2.6–3.8 nm in diameter, in magnetic fields up to 30 T. The exciton photoluminescence decay time decreases with both dot size and magnetic field. We explain the decrease in decay time in magnetic fields by the mixing of bright and dark exciton states due to a small shape asymmetry in the zinc-blende CdTe NQDs. We show that this behavior resembles that of wurtzite CdSe NQDs, and we demonstrate that an asymmetry of NQDs caused by either shape or crystal structure leads to similar exciton decay dynamics.
Molecular and Biophysics, Correlated Electron Systems / High Field Magnet Laboratory (HFML)
Molecular and Biophysics, Correlated Electron Systems / High Field Magnet Laboratory (HFML)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |