
doi: 10.1101/pdb.top39
pmid: 21356855
INTRODUCTIONThe original Dayhoff percent accepted mutation (PAM) matrices were developed based on a small number of protein sequences and an evolutionary model of protein change. By extrapolating from the observed changes at small evolutionary distances to large ones, it was possible to establish a PAM250 scoring matrix for sequences that were highly divergent. Another approach to finding a scoring matrix for divergent sequences is to start with a more divergent set of sequences and produce a scoring matrix from the substitutions found in those less-related sequences. The blocks amino acid substitution matrices (BLOSUM) scoring matrices were prepared this way. This article explains how BLOSUM scoring matrices were created and how they can best be used.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
