Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mosquito Embryo Microinjection

Authors: Robert A, Harrell;

Mosquito Embryo Microinjection

Abstract

Genetically modified (GM) mosquitoes are an important tool in the fight against mosquito-borne disease, both indirectly through their use in research investigating host–pathogen interaction, mosquito olfaction, and anthropomorphic behavior and in future direct uses for suppression and possibly eradication through sterile insect technique (SIT) and/or gene-drive programs. Successful creation of GM mosquitoes depends on microinjection procedures that precisely deliver injection materials while causing as little damage to mosquito embryos as possible. Genetic modification reagents, such as transposon system components (vector plasmids, helper plasmids, and helper mRNA), and CRISPR–Cas9 components (guide RNAs, Cas9 protein, plasmids expressing Cas9 and/or guide RNAs, and donor plasmids used in homology-directed repair [HDR]), must be delivered into the preblastoderm embryo at the posterior end where the pole cells will form before cellularization occurs. Sharp needles that pierce the embryo easily are important tools in this procedure and work best when the embryos are not desiccated. The two main procedures for mosquito embryo microinjection involve injecting embryos under halocarbon oil or under aqueous solution.

Keywords

Animals, Genetically Modified, Culicidae, Embryo, Nonmammalian, Microinjections, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?