
The embryos of the African clawed frog, Xenopus laevis, are a powerful substrate for the study of complex fundamental biological and disease mechanisms in neurobiology, physiology, molecular biology, cell biology, and developmental biology. A simple and straightforward technique for generating a large number of developmentally synchronized embryos is in vitro fertilization (IVF). IVF permits simultaneous fertilization of thousands of eggs but requires the death of the parental male, which may not be feasible if the male comes from a stock of precious animals. An alternative to euthanizing a precious male is to use a natural mating, which allows for the collection of many embryos with minimal preparation but with the potential loss of the experimental advantage of developmental synchronization. Here we present both strategies for obtaining X. laevis embryos.
Male, Ovulation, Xenopus laevis, Embryo, Nonmammalian, Physiology, Fertilization, Testis, Animals, Fertilization in Vitro, Spermatozoa
Male, Ovulation, Xenopus laevis, Embryo, Nonmammalian, Physiology, Fertilization, Testis, Animals, Fertilization in Vitro, Spermatozoa
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
