Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Learning & Memoryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Learning & Memory
Article
Data sources: UnpayWall
Learning & Memory
Article . 1996 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Properties of LTP induction in the CA3 region of the primate hippocampus.

Authors: David A. Lewis; Nathaniel N. Urban; German Barrionuevo; Darrell A. Henze;

Properties of LTP induction in the CA3 region of the primate hippocampus.

Abstract

Activity-dependent changes in synaptic strength, such as long-term potentiation (LTP), have been proposed to underlie memory storage in the brains of all mammals, including humans. However, most forms of synaptic plasticity, including LTP, are studied almost exclusively in rodents and related species. Thus, the hypothesis that LTP is important in human memory relies on the assumption that LTP is similar in the primate and rodent brains. We have begun to test this hypothesis by studying the properties and mechanisms of LTP induction in area CA3 of hippocampal slices from cynomolgus monkeys. We have found that LTP can be induced reliably at both mossy fiber-CA3 and collateral/associational-CA3 synapses in the primate brain, and that the properties of LTP induction at these synapses are similar to what we and others have observed in experiments using hippocampal slices from rodents. Also, we have investigated the role of opioids in mossy fiber synaptic transmission and LTP and have found no effect of the opioid antagonist naloxone nor the opioid agonist dynorphin on mossy fiber synaptic transmission or potentiation. These data suggest that LTP in the primate and rat brains has a similar induction mechanism and, thus, that the rodent is a useful animal model in which to study synaptic modification such as LTP.

Related Organizations
Keywords

Primates, Naloxone, Narcotic Antagonists, Long-Term Potentiation, In Vitro Techniques, Kynurenic Acid, Hippocampus, Synaptic Transmission, Electric Stimulation, Association, Macaca fascicularis, Mossy Fibers, Hippocampal, Synapses, Animals, Excitatory Amino Acid Antagonists

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Average
gold
Published in a Diamond OA journal