
doi: 10.1101/gr.7.7.716
pmid: 9253600
The association of subclasses of Alu repetitive elements with various classes of trinucleotide and tetranucleotide microsatellites was characterized as a first step toward advancing our understanding of the evolution of microsatellite repeats. In addition, information regarding the association of specific classes of microsatellites with families of Alu elements was used to facilitate the development of genetic markers. Sequences containingAlu repeats were eliminated because unique primers could not be designed. Various classes of microsatellites are associated with different classes of Alu repeats. Very abundant and poly(A)-rich microsatellite classes (ATA, AATA) are frequently associated with an evolutionarily older subclass of Alurepeats, AluSx, whereas most of GATA and CA microsatellites are associated with a recent Alu subfamily, AluY. Our observations support all three possible mechanisms for the association of Alu repeats to microsatellites. Primers designed using a set of sequences from a particular microsatellite class showed higher homology with more sequences of that class than probes designed for other classes. We developed an efficient method of prescreening GGAA and ATA microsatellite clones for Alu repeats with probes designed in this study. We also showed that Alu probes labeled in a single reaction (multiplex labeling) could be used efficiently for prescreening of GGAA clones. Sequencing of these prescreened GGAA microsatellites revealed only 5% Alu repeats. Prescreening with primers designed for ATA microsatellite class resulted in the reduction of the loss of markers from ∼50% to 10%. The newAlu probes that were designed have also proved to be useful inAlu–Alu fingerprinting.
Mice, Genome, Human, Animals, Chromosome Mapping, Humans, Chromosomes, Artificial, Yeast, Microsatellite Repeats, Repetitive Sequences, Nucleic Acid
Mice, Genome, Human, Animals, Chromosome Mapping, Humans, Chromosomes, Artificial, Yeast, Microsatellite Repeats, Repetitive Sequences, Nucleic Acid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
