Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Research
Article
Data sources: UnpayWall
Genome Research
Article . 2003 . Peer-reviewed
Data sources: Crossref
Genome Research
Article . 2004
versions View all 2 versions
addClaim

Nucleotide Frequency Variation Across Human Genes

Authors: Elizabeth, Louie; Jurg, Ott; Jacek, Majewski;

Nucleotide Frequency Variation Across Human Genes

Abstract

The frequencies of individual nucleotides exhibit significant fluctuations across eukaryotic genes. In this paper, we investigate nucleotide variation across an averaged representation of all known human genes. Such a representation allows us to average out random fluctuations that constitute noise and uncover remarkable systematic trends in nucleotide distributions, particularly near boundaries between genetic elements--the promoter, exons, and introns. We propose that such variations result from differential mutational pressures and from the presence of specific regulatory motifs, such as transcription and splicing factor binding sites. Specifically, we observe significant GC and TA biases (excess of G over C and T over A) in noncoding regions of genes. Such biases are most probably caused by transcription-coupled mismatch repair, an effect that has recently been detected in mammalian genes. Subsequently, we examine the distribution of all hexanucleotides and identify motifs that are overrepresented within regulatory regions. By clustering and aligning such sequences, we recognize families of putative regulatory elements involved in exonic and intronic splicing control, and 3' mRNA processing. Some of our motifs have been identified in prior theoretical and experimental studies, thus validating our approach, but we detect several novel sequences that we propose as candidates for future functional assays and mutation screens for genetic disorders.

Related Organizations
Keywords

Base Composition, Genes, Nucleotides, Computational Biology, Genetic Variation, Humans, Exons, AT Rich Sequence, Introns, GC Rich Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
bronze