Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MAD2B is an inhibitor of the anaphase-promoting complex

Authors: J, Chen; G, Fang;

MAD2B is an inhibitor of the anaphase-promoting complex

Abstract

Anaphase-promoting complex (APC), a ubiquitin ligase, controls both sister chromatid separation and mitotic exit. The APC is activated in mitosis and G1 by CDC20 and CDH1, and inhibited by the checkpoint protein MAD2, a specific inhibitor of CDC20. We show here that a MAD2 homolog MAD2B also inhibits APC. In contrast to MAD2, MAD2B inhibits both CDH1-APC and CDC20-APC. This inhibition is targeted to CDH1 and CDC20, but not directly to APC. Unlike MAD2, whose interaction with MAD1 is required for mitotic checkpoint control, MAD2B does not interact with MAD1, suggesting that MAD2B may relay a different cellular signal to APC.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Cdc20 Proteins, Ubiquitin-Protein Ligases, Xenopus, Mitosis, Nuclear Proteins, Proteins, Ubiquitin-Protein Ligase Complexes, Cell Cycle Proteins, Chromatids, Cyclin B, Phosphoproteins, Anaphase-Promoting Complex-Cyclosome, Ligases, Repressor Proteins, Mad2 Proteins, Animals, Humans, Cloning, Molecular, Subcellular Fractions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal