Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Messenger RNAs are recruited for nuclear export during transcription

Authors: Heike Krebber; Pamela A. Silver; Elissa P. Lei;

Messenger RNAs are recruited for nuclear export during transcription

Abstract

Following transcription and processing, eukaryotic mRNAs are exported from the nucleus to the cytoplasm for translation. Here we present evidence that mRNAs are targeted for nuclear export cotranscriptionally. Combined mutations in the Saccharomyces cerevisiae hnRNP Npl3 and TATA-binding protein (TBP) block mRNA export, implying that cotranscriptional recruitment of Npl3 is required for efficient export of mRNA. Furthermore, Npl3 can be found in a complex with RNA Pol II, indicating that Npl3 associates with the transcription machinery. Finally, Npl3 is recruited to genes in a transcription dependent manner as determined by chromatin immunoprecipitation. Another mRNA export factor, Yra1, also associates with chromatin cotranscriptionally but appears to be recruited at a later step. Taken together, our results suggest that export factors are recruited to the sites of transcription to promote efficient mRNA export.

Related Organizations
Keywords

Cell Nucleus, Saccharomyces cerevisiae Proteins, Models, Genetic, Transcription, Genetic, Nuclear Proteins, RNA-Binding Proteins, Biological Transport, Cell Cycle Proteins, RNA, Fungal, Saccharomyces cerevisiae, TATA-Box Binding Protein, Chromatin, DNA-Binding Proteins, Fungal Proteins, Mutation, RNA Polymerase II, RNA, Messenger, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    204
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
204
Top 10%
Top 1%
Top 1%
Published in a Diamond OA journal