
Almost 20 years ago, the gene underlying fatal familial insomnia was discovered, and first suggested the concept that a single gene can regulate sleep. In the two decades since, there have been many advances in the field of behavioral genetics, but it is only in the past 10 years that the genetic analysis of sleep has emerged as an important discipline. Major findings include the discovery of a single gene underlying the sleep disorder narcolepsy, and identification of loci that make quantitative contributions to sleep characteristics. The sleep field has also expanded its focus from mammalian model organisms to Drosophila, zebrafish, and worms, which is allowing the application of novel genetic approaches. Researchers have undertaken large-scale screens to identify new genes that regulate sleep, and are also probing questions of sleep circuitry and sleep function on a molecular level. As genetic tools continue to be refined in each model organism, the genes that support a specific function in sleep will become more apparent. Thus, while our understanding of sleep still remains rudimentary, rapid progress is expected from these recently initiated studies.
Inheritance Patterns, Animals, Homeostasis, Humans, Neurochemistry, Sleep, Circadian Rhythm
Inheritance Patterns, Animals, Homeostasis, Humans, Neurochemistry, Sleep, Circadian Rhythm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 133 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
