
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )Euchromatin, which has an open structure and is frequently transcribed, tends to replicate in early S phase. Heterochromatin, which is more condensed and rarely transcribed, usually replicates in late S phase. Here, we report significant deviation from this correlation in the fission yeast,Schizosaccharomyces pombe. We found that heterochromatic centromeres and silent mating-type cassettes replicate in early S phase. Only heterochromatic telomeres replicate in late S phase. Research in other laboratories has shown that occasionally other organisms also replicate some of their heterochromatin in early S phase. Thus, late replication is not an obligatory feature of heterochromatin.
DNA Replication, Heterochromatin, Centromere, Schizosaccharomyces, Telomere
DNA Replication, Heterochromatin, Centromere, Schizosaccharomyces, Telomere
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 138 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
