
What drives the emergence of new species has fascinated biologists since Darwin. Reproductive barriers to gene flow are a key step in the formation of species, and recent advances have shed new light on how these are established. Genetic, genomic, and comparative techniques, together with improved theoretical frameworks, are increasing our understanding of the underlying mechanisms. They are also helping us forecast speciation and reveal the impact of human activity.
Gene Flow, 570, Reproductive Isolation, Genetic Speciation, Animals, Humans, Genomics
Gene Flow, 570, Reproductive Isolation, Genetic Speciation, Animals, Humans, Genomics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
