
Rapamycin is a Food and Drug Administration (FDA)-approved immunosuppressant and anticancer agent discovered in the soil of Easter Island in the early 1970s. Rapamycin is a potent and selective inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, which acts as a central integrator of nutrient signaling pathways. During the last decade, genetic and pharmaceutical inhibition of mTOR pathway signaling has been found to promote longevity in yeast, worms, flies, and mice. In this article, we will discuss the molecular biology underlying the effects of rapamycin and its physiological effects, evidence for rapamycin as an antiaging compound, mechanisms by which rapamycin may extend life span, and the potential limitations of rapamycin as an antiaging molecule. Finally, we will discuss possible strategies that may allow us to inhibit mTOR signaling safely while minimizing side effects, and reap the health, social, and economic benefits from slowing the aging process.
Sirolimus, Mice, Antibiotics, Antineoplastic, TOR Serine-Threonine Kinases, Longevity, Animals, Humans, Immunosuppressive Agents, Signal Transduction
Sirolimus, Mice, Antibiotics, Antineoplastic, TOR Serine-Threonine Kinases, Longevity, Animals, Humans, Immunosuppressive Agents, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 165 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
