
Most organisms use their olfactory system to detect and analyze chemical cues from the external world to guide essential behaviors. From worms to vertebrates, chemicals are detected by odorant receptors expressed by olfactory sensory neurons, which in vertebrates send an axon to the primary processing center called the olfactory bulb (OB). Within the OB, sensory neurons form excitatory synapses with projection neurons and with inhibitory interneurons. Thus, because of complex synaptic interactions, the output of a given projection neuron is determined not only by the sensory input, but also by the activity of local inhibitory interneurons that are regenerated throughout life in the process of adult neurogenesis. Herein, we discuss how it is optimized and why.
Interneurons, Neurogenesis, Age Factors, Animals, Olfactory Bulb
Interneurons, Neurogenesis, Age Factors, Animals, Olfactory Bulb
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 131 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
