
A critical requirement for mitosis is the distribution of genetic material to the two daughter cells. The central player in this process is the macromolecular kinetochore structure, which binds to both chromosomal DNA and spindle microtubule polymers to direct chromosome alignment and segregation. This review will discuss the key kinetochore activities required for mitotic chromosome segregation, including the recognition of a specific site on each chromosome, kinetochore assembly and the formation of kinetochore-microtubule connections, the generation of force to drive chromosome segregation, and the regulation of kinetochore function to ensure that chromosome segregation occurs with high fidelity.
Chromosomal Proteins, Non-Histone, Chromosome Segregation, Humans, Mitosis, Cell Cycle Proteins, Cell Cycle Checkpoints, Spindle Apparatus, Kinetochores, Microtubules
Chromosomal Proteins, Non-Histone, Chromosome Segregation, Humans, Mitosis, Cell Cycle Proteins, Cell Cycle Checkpoints, Spindle Apparatus, Kinetochores, Microtubules
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 283 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
