
The first successful kidney transplantation between monozygotic identical twins did not require any immunosuppressive drugs. Clinical application of azathioprine and glucocorticosteroids allowed the transfer of organs between genetically disparate donors and recipients. Transplantation is now the standard of care, a life-saving procedure for patients with failed organs. Progress in our understanding of the immunobiology of rejection has been translated to the development of immunosuppressive agents targeting T cells, B cells, plasma cells, costimulatory signals, complement products, and antidonor antibodies. Modern immunopharmacologic interventions have contributed to the clinical success observed following transplantation but challenges remain in personalizing immunosuppressive therapy.
Graft Rejection, B-Lymphocytes, Transplantation Immunology, Plasma Cells, Humans, Complement System Proteins, Allografts, Immunosuppressive Agents
Graft Rejection, B-Lymphocytes, Transplantation Immunology, Plasma Cells, Humans, Complement System Proteins, Allografts, Immunosuppressive Agents
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 72 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
