
The combination of carbohydrate and lipid generates unusual molecules in which the two distinctive halves of the glycoconjugate influence the function of each other. Membrane glycolipids can act as primary receptors for carbohydrate binding proteins to mediate transmembrane signaling despite restriction to the outer bilayer leaflet. The extensive heterogeneity of the lipid moiety plays a significant, but still largely unknown, role in glycosphingolipid function. Potential interplay between glycolipids and their fatty acid isoforms, together with their preferential interaction with cholesterol, generates a complex mechanism for the regulation of their function in cellular physiology.
Molecular Conformation, Embryonic Development, Receptors, Cell Surface, HIV Envelope Protein gp120, Ceramides, Glycosphingolipids, Mice, Protein Transport, Membrane Microdomains, HIV-1, Animals, Signal Transduction, Toxins, Biological
Molecular Conformation, Embryonic Development, Receptors, Cell Surface, HIV Envelope Protein gp120, Ceramides, Glycosphingolipids, Mice, Protein Transport, Membrane Microdomains, HIV-1, Animals, Signal Transduction, Toxins, Biological
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 125 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
