
Through their oxygen delivery function, red blood cells are pivotal to the healthy existence of all vertebrate organisms. These cells are required during all stages of life--embryonic, fetal, neonatal, adolescent, and adult. In the adult, red blood cells are the terminally differentiated end-product cells of a complex hierarchy of hematopoietic progenitors that become progressively restricted to the erythroid lineage. During this stepwise differentiation process, erythroid progenitors undergo enormous expansion, so as to fulfill the daily requirement of ~2 × 10(11) new erythrocytes. How the erythroid lineage is made has been a topic of intense research over the last decades. Developmental studies show that there are two types of red blood cells--embryonic and adult. They develop from distinct hemogenic/hematopoietic progenitors in different anatomical sites and show distinct genetic programs. This article highlights the developmental and differentiation events necessary in the production of hemoglobin-producing red blood cells.
Erythrocytes, EMC MGC-02-13-03, Embryonic Development, Cell Differentiation, Hematopoietic Stem Cells, Animals, Humans, Erythropoiesis, Growth and Development, Transcription Factors
Erythrocytes, EMC MGC-02-13-03, Embryonic Development, Cell Differentiation, Hematopoietic Stem Cells, Animals, Humans, Erythropoiesis, Growth and Development, Transcription Factors
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 312 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
