
Enormous numbers of adult blood cells are constantly regenerated throughout life from hematopoietic stem cells through a series of progenitor stages. Accessibility, robust functional assays, well-established prospective isolation, and successful clinical application made hematopoiesis the classical mammalian stem cell system. Most of the basic concepts of stem cell biology have been defined in this system. At the same time, many long-standing disputes in hematopoiesis research illustrate our still limited understanding. Here we discuss the embryonic development and lifelong maintenance of the hematopoietic system, its cellular components, and some of the hypotheses about the molecular mechanisms involved in controlling hematopoietic cell fates.
Mice, Stem Cells, Animals, Embryonic Development, Humans, Cell Differentiation, Cell Lineage, Hematopoiesis, Signal Transduction
Mice, Stem Cells, Animals, Embryonic Development, Humans, Cell Differentiation, Cell Lineage, Hematopoiesis, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 150 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
