Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cold Spring Harbor P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cold Spring Harbor Perspectives in Biology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

T-Cell Tolerance: Central and Peripheral

Authors: Yan, Xing; Kristin A, Hogquist;

T-Cell Tolerance: Central and Peripheral

Abstract

Somatic recombination of TCR genes in immature thymocytes results in some cells with useful TCR specificities, but also many with useless or potentially self-reactive specificities. Thus thymic selection mechanisms operate to shape the T-cell repertoire. Thymocytes that have a TCR with low affinity for self-peptide-MHC complexes are positively selected to further differentiate and function in adaptive immunity, whereas useless ones die by neglect. Clonal deletion and clonal diversion (Treg differentiation) are the major processes in the thymus that eliminate or control self-reactive T cells. Although these processes are thought to be efficient, they fail to control self-reactivity in all circumstances. Thus, peripheral tolerance processes exist wherein self-reactive T cells become functionally unresponsive (anergy) or are deleted after encountering self-antigens outside of the thymus. Recent advances in mechanistic studies of central and peripheral T-cell tolerance are promoting the development of therapeutic strategies to treat autoimmune disease and cancer and improve transplantation outcome.

Keywords

Clonal Anergy, T-Lymphocytes, Receptors, Antigen, T-Cell, Antigen-Presenting Cells, Humans, Adaptation, Physiological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    400
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
400
Top 0.1%
Top 1%
Top 1%
bronze