<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
It is now accepted that breast cancer is not a single disease, but instead it is composed of a spectrum of tumor subtypes with distinct cellular origins, somatic changes, and etiologies. Gene expression profiling using DNA microarrays has contributed significantly to our understanding of the molecular heterogeneity of breast tumor formation, progression, and recurrence. For example, at least two clinical diagnostic assays exist (i.e., OncotypeDX RS and Mammaprint®) that are able to predict outcome in patients using patterns of gene expression and predetermined mathematical algorithms. In addition, a new molecular taxonomy based upon the inherent, or “intrinsic,” biology of breast tumors has been developed; this taxonomy is called the “intrinsic subtypes of breast cancer,” which now identifies five distinct tumor types and a normal breast-like group. Importantly, the intrinsic subtypes of breast cancer predict patient relapse, overall survival, and response to endocrine and chemotherapy regimens. Thus, most of the clinical behavior of a breast tumor is already written in its subtype profile. Here, we describe the discovery and basic biology of the intrinsic subtypes of breast cancer, and detail how this interacts with underlying genetic alternations, response to therapy, and the metastatic process.
Gene Expression Profiling, Systems Biology, Humans, Breast Neoplasms, Female, Genomics, Neoplasm Metastasis, Oligonucleotide Array Sequence Analysis
Gene Expression Profiling, Systems Biology, Humans, Breast Neoplasms, Female, Genomics, Neoplasm Metastasis, Oligonucleotide Array Sequence Analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 198 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |