
Pre-mRNA processing, including 5'-end capping, splicing, editing, and polyadenylation, consists of a series of orchestrated and primarily cotranscriptional steps that ensure both the high fidelity and extreme diversity characteristic of eukaryotic gene expression. Alternative splicing and editing allow relatively small genomes to encode vast proteomic arrays while alternative 3'-end formation enables variations in mRNA localization, translation, and stability. Of course, this mechanistic complexity comes at a high price. Mutations in the myriad of RNA sequence elements that regulate mRNA biogenesis, as well as the trans-acting factors that act upon these sequences, underlie a number of human diseases. In this review, we focus on one of these key RNA processing steps, splicing, to highlight recent studies that describe both conventional and novel pathogenic mechanisms that underlie muscle and neurological diseases.
RNA Splicing, Spliceosomes, Humans, Neuromuscular Diseases, RNA, Messenger, Microsatellite Repeats
RNA Splicing, Spliceosomes, Humans, Neuromuscular Diseases, RNA, Messenger, Microsatellite Repeats
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
