
Investigations into the organization of transcription have their origins in cell biology. Early studies characterized nascent transcription in relation to discernable nuclear structures and components. Advances in light microscopy, immunofluorescence, and in situ hybridization helped to begin the difficult task of naming the countless individual players and components of transcription and placing them in context. With the completion of mammalian genome sequences, the seemingly boundless task of understanding transcription of the genome became finite and began a new period of rapid advance. Here we focus on the organization of transcription in mammals drawing upon information from lower organisms where necessary. The emerging picture is one of a highly organized nucleus with specific conformations of the genome adapted for tissue-specific programs of transcription and gene expression.
Cell Nucleus, Genome, Transcription, Genetic, Animals, Humans, RNA, RNA Polymerase II, Phosphorylation, Chromatin
Cell Nucleus, Genome, Transcription, Genetic, Animals, Humans, RNA, RNA Polymerase II, Phosphorylation, Chromatin
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
