
AbstractHerpesviruses are ubiquitous pathogens in need of novel therapeutic solutions. Current engineered gene drive strategies rely on sexual reproduction, and are thought to be restricted to sexual organisms. Here, we report on the design of a novel gene drive system that allows the spread of an engineered trait in populations of DNA viruses and, in particular, herpesviruses. We describe the successful transmission of a gene drive sequence between distinct strains of human cytomegalovirus (human herpesvirus 5) and show that gene drive viruses can efficiently target and replace wildtype populations in cell culture experiments. Our results indicate that viral gene drives can be used to suppress a viral infection and may represent a novel therapeutic strategy against herpesviruses.
Gene Editing, Science, Q, Gene Drive Technology, Cytomegalovirus, Virus Replication, Article, Cell Line, DNA, Viral, Humans, Herpesviridae
Gene Editing, Science, Q, Gene Drive Technology, Cytomegalovirus, Virus Replication, Article, Cell Line, DNA, Viral, Humans, Herpesviridae
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
