Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.cell.com/article/S0...
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The American Journal of Human Genetics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The American Journal of Human Genetics
Article . 2020 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://doi.org/10.1101/650242...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

Allele-Specific QTL Fine-Mapping with PLASMA

Authors: Wang, Austin T.; Shetty, Anamay; O’Connor, Edward; Bell, Connor; Pomerantz, Mark M.; Freedman, Matthew L.; Gusev, Alexander;

Allele-Specific QTL Fine-Mapping with PLASMA

Abstract

AbstractAlthough quantitative trait locus (QTL) associations have been identified for many molecular traits such as gene expression, it remains challenging to distinguish the causal nucleotide from nearby variants. In addition to traditional QTLs by association, allele-specific (AS) QTLs are a powerful measure of cis-regulation that are largely concordant with traditional QTLs, and can be less susceptible to technical/environmental noise. However, existing asQTL analysis methods do not produce probabilities of causality for each marker, and do not take into account correlations among markers at a locus in linkage disequilibrium (LD). We introduce PLASMA (PopuLation Allele-Specific MApping), a novel, LD-aware method that integrates QTL and asQTL information to fine-map causal regulatory variants while drawing power from both the number of individuals and the number of allelic reads per individual. We demonstrate through simulations that PLASMA successfully detects causal variants over a wide range of genetic architectures. We apply PLASMA to RNA-Seq data from 524 kidney tumor samples and show that over 17 percent of loci can be fine-mapped to within 5 causal variants, compared less than 2 percent of loci using existing QTL-based fine-mapping. PLASMA furthermore achieves a greater power at 50 samples than conventional QTL fine-mapping does at over 500 samples. Overall, PLASMA achieves a 6.9-fold reduction in median 95% credible set size compared to existing QTL-based fine-mapping. We additionally apply PLASMA to H3K27AC ChIP-Seq from 28 prostate tumor/normal samples and demonstrate that PLASMA is able to prioritize markers even at small samples, with PLASMA achieving a 1.3-fold reduction in median 95% credible set sizes over existing QTL-based fine-mapping. Variants in the PLASMA credible sets for RNA-Seq and ChIP-Seq were enriched for open chromatin and chromatin looping (respectively) at a comparable or greater degree than credible variants from existing methods, while containing far fewer markers. Our results demonstrate how integrating AS activity can substantially improve the detection of causal variants from existing molecular data and at low sample size.

Keywords

Male, Quantitative Trait Loci, Chromosome Mapping, Prostatic Neoplasms, Allelic Imbalance, Polymorphism, Single Nucleotide, Kidney Neoplasms, Linkage Disequilibrium, Phenotype, Data Interpretation, Statistical, Biomarkers, Tumor, Humans, Computer Simulation, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid