Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/629881...
Article . 2019 . Peer-reviewed
Data sources: Crossref
http://dx.doi.org/10.1101/6298...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Alphavirus nsP3 ADP-ribosylhydrolase Activity Disrupts Stress Granule Formation

Authors: Jayabalan, Aravinth Kumar; Griffin, Diane E.; Leung, Anthony K. L.;

Alphavirus nsP3 ADP-ribosylhydrolase Activity Disrupts Stress Granule Formation

Abstract

ABSTRACTFormation of stress granules (SGs), cytoplasmic condensates of stalled translation initiation complexes, is regulated by post-translational protein modification. Alphaviruses interfere with SG formation in response to inhibition of host protein synthesis through the activities of nonstructural protein 3 (nsP3). nsP3 has a conserved N-terminal macrodomain that binds and can remove ADP-ribose from ADP-ribosylated proteins and a C-terminal hypervariable domain that binds essential SG component G3BP1. We showed that the hydrolase activity of chikungunya virus nsP3 macrodomain removed ADP-ribosylation of G3BP1 and suppressed SG formation. ADP-ribosylhydrolase-deficient nsP3 mutants allowed stress-induced cytoplasmic condensation of translation initiation factors. nsP3 also disassembled SG-like aggregates enriched with translation initiation factors that are induced by the expression of FUS mutant R495X linked to amyotrophic lateral sclerosis. Therefore, our data indicate that regulation of ADP-ribosylation controls the localization of translation initiation factors during virus infection and other pathological conditions.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green