Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.cell.com/article/S0...
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2019 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://doi.org/10.1101/314641...
Article . 2018 . Peer-reviewed
Data sources: Crossref
SSRN Electronic Journal
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

Estrus-Cycle Regulation of Cortical Inhibition

Authors: Clemens, Ann M.; Lenschow, Constanze; Beed, Prateep; Li, Lanxiang; Sammons, Rosanna; Naumann, Robert K.; Wang, Hong; +2 Authors

Estrus-Cycle Regulation of Cortical Inhibition

Abstract

SummaryFemale mammals experience cyclical changes in sexual receptivity known as the estrus-cycle. Little is known about how estrus affects the cortex although alterations in sensation, cognition and the cyclic occurrence of epilepsy suggest brain-wide processing changes. We performedin vivojuxtacellular and whole-cell recordings in somatosensory cortex of female rats and found that the estrus-cycle potently altered cortical inhibition. Fast-spiking interneurons strongly varied their activity with the estrus-cycle and estradiol in ovariectomized females, while regular-spiking excitatory neurons did not change.In vivowhole-cell recordings revealed a varying excitation-to-inhibition-ratio with estrus.In situhybridization for estrogen receptor β (Esr2) showed co-localization with parvalbumin-positive interneurons in deep cortical layers, mirroring the laminar distribution of our physiological findings.In vivoandin vitroexperiments confirmed that estrogen acts locally to increase fast-spiking interneuron excitability through an estrogen receptor β mechanism. We conclude that sex hormones powerfully modulate cortical inhibition in the female brain.

Keywords

Ovariectomy, Estrous Cycle, Neural Inhibition, Somatosensory Cortex, Rats, Rats, Sprague-Dawley, Parvalbumins, Touch Perception, Interneurons, Animals, Female, Rats, Transgenic, Rats, Wistar

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 1%
Top 10%
Top 10%
Green
hybrid