Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/256701...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convolutional neural network, personalised, closed-loop Brain-Computer Interfaces for multi-way control mode switching in real-time

Authors: Ortega, Pablo; Colas, Cédric; Faisal, Aldo;

Convolutional neural network, personalised, closed-loop Brain-Computer Interfaces for multi-way control mode switching in real-time

Abstract

AbstractExoskeletons and robotic devices are for many motor disabled people the only way to interact with their envi-ronment. Our lab previously developed a gaze guided assistive robotic system for grasping. It is well known that the same natural task can require different interactions described by different dynamical systems that would require different robotic controllers and their selection by the user in a self paced way. Therefore, we investigated different ways to achieve transitions between multiple states, finding that eye blinks were the most reliable to transition from ‘off’ to ‘control’ modes (binary classification) compared to voice and electromyography. In this paper be expanded on this work by investigating brain signals as sources for control mode switching. We developed a Brain Computer Interface (BCI) that allows users to switch between four control modes in self paced way in real time. Since the system is devised to be used in domestic environments in a user friendly way, we selected non-invasive electroencephalographic (EEG) signals and convolutional neural networks (ConvNets), known by their capability to find the optimal features for a classification task, which we hypothesised would add flexibility to the system in terms of which mental activities the user could perform to control it. We tested our system using the Cybathlon BrainRunners computer game, which represents all the challenges inherent to real time control. Our preliminary results show that an efficient architecture (SmallNet) composed by a convolutional layer, a fully connected layer and a sigmoid classification layer, is able to classify 4 mental activities that the user chose to perform. For his preferred mental activities, we run and validated the system online and retrained the system using online collected EEG data. We achieved 47, 6% accuracy in online operation in the 4-way classification task. In particular we found that models trained with online collected data predicted better the behaviour of the system in real time suggesting, as a side note, that similar (ConvNets based) offline classifying methods present in literature might find a decay in performance when applied online. To the best of our knowledge this is the first time such an architecture is tested in an online operation task. While compared to our previous method relying on blinks with this one we reduced in less than half (1.6 times) the accuracy but increased by 2 the amount of states among which we can transit, bringing the opportunity for finer control of specific subtasks composing natural grasping in a self paced way.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green