Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2025.0...
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY NC
Data sources: PubMed Central
versions View all 2 versions
addClaim

A recurrent sequencing artifact on Illumina sequencers with two-color fluorescent dye chemistry and its impact on somatic variant detection

Authors: Beverly J. Fu; Vinayak V Viswanadham; Dominika Maziec; Hu Jin; Peter J. Park;

A recurrent sequencing artifact on Illumina sequencers with two-color fluorescent dye chemistry and its impact on somatic variant detection

Abstract

Abstract Background The sequencing-by-synthesis technology by Illumina, Inc. enables efficient and scalable readouts of mutations from genomic data. To enhance sequencing speed and efficiency, Illumina has shifted from the four-color base calling chemistry of the HiSeq series to a two-color fluorescent dye chemistry in the NovaSeq series. Benchmarking sequencing artifacts due to biases in the newer chemistry is important to evaluate the quality of identified mutations. Results We re-analyzed a series of whole-genome sequencing experiments in which the same samples were sequenced on the NovaSeq 6000 (two-color) and HiSeq X10 (four-color) platforms by independent groups. In several samples, we observed a higher frequency of T-to-G and A-to-C substitutions (“T>G”) at the read level for NovaSeq 6000 versus HiSeq X10. As the per-base error rate is still low, the artifactual substitutions have a negligible effect in identifying germline or high variant allele frequency (VAF) somatic mutations. However, such errors can confound the detection of low-VAF somatic variants in high-depth sequencing samples, particularly in studies of mosaic mutations in normal tissues, where variants have low read support and are called without a matched normal. The artifactual T>G variant calls disproportionately occur at NT[TG] trinucleotides, and we leveraged this observation to bioinformatically reduce the T>G excess in somatic mutation callsets. Conclusions We identified a recurrent artifact specific to the Illumina two-color chemistry platform on the NovaSeq 6000 with the potential to contaminate low-VAF somatic mutation calls. Thus, an unexpected enrichment of T>G mutations in mosaicism studies warrants caution.

Related Organizations
Keywords

Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average