Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ medRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://europepmc.org/articles...
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1101/2020.0...
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transfer RNA fragments replace microRNA regulators of the cholinergic post-stroke immune blockade

Authors: Winek, Katarzyna; Lobentanzer, Sebastian; Nadorp, Bettina; Dubnov, Serafima; Dames, Claudia; Jagdmann, Sandra; Moshitzky, Gilli; +8 Authors

Transfer RNA fragments replace microRNA regulators of the cholinergic post-stroke immune blockade

Abstract

AbstractStroke is a leading cause of death and disability. Recovery depends on balance between inflammatory response and immune suppression, which can be CNS-protective but may worsen prognosis by increasing patients’ susceptibility to infections. Peripheral cholinergic blockade of immune reactions fine-tunes this immune response, but its molecular regulators are unknown. Therefore, we sought small RNA balancers of the cholinergic anti-inflammatory pathway in peripheral blood from ischemic stroke patients. Using RNA-sequencing and RT-qPCR, we discovered in patients’ blood on day 2 after stroke a “change of guards” reflected in massive decreases in microRNAs (miRs) and increases in transfer RNA fragments (tRFs) targeting cholinergic transcripts. Electrophoresis-based size-selection followed by RT-qPCR validated the top 6 upregulated tRFs in a separate cohort of stroke patients, and independent small RNA-sequencing datasets presented post-stroke enriched tRFs as originating from lymphocytes and monocytes. In these immune compartments, we found CD14+ monocytes to express the highest amounts of cholinergic transcripts. In-depth analysis of CD14+ regulatory circuits revealed minimally overlapping subsets of transcription factors carrying complementary motifs to miRs or tRFs, indicating different roles for the stroke-perturbed members of these small RNA species. Furthermore, LPS-stimulated murine RAW264.7 cells presented dexamethasone-suppressible upregulation of the top 6 tRFs identified in human patients, indicating an evolutionarily conserved and pharmaceutically treatable tRF response to inflammatory cues. Our findings identify tRF/miR subgroups which may co-modulate the homeostatic response to stroke in patients’ blood and open novel venues for establishing RNA-targeted concepts for post-stroke diagnosis and therapeutics.

Country
Germany
Keywords

ddc:610, 570, 572, 610, ddc:570

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green