
doi: 10.1101/130146
AbstractEnterococci are important human commensals and significant opportunistic pathogens associated with endocarditis, urinary tract infections, wound and surgical site infections, and medical device associated infections. These infections often become chronic upon the formation of biofilm. The biofilm matrix establishes properties that distinguish this state from free-living bacterial cells and increase tolerance to antimicrobial interventions. The metabolic versatility of the Enterococci is reflected in the diversity and complexity of environments and communities in which they thrive. Understanding metabolic factors governing colonization and persistence in different host niches can reveal factors influencing the transition from commensal to opportunistic pathogen. Here, we report a new form of iron-dependent metabolism forEnterococcus faecaliswhere, in the absence of heme, respiration components can be utilised for extracellular electron transfer (EET). Iron augmentsE. faecalisbiofilm growth and generates alterations in biofilm matrix, cell spatial distribution, and biofilm matrix properties. We identify the genes involved in iron-augmented biofilm growth and show that it occurs by promoting EET to iron within biofilm.SignificanceBacterial metabolic versatility is often key in dictating the outcome of host-pathogen interactions, yet determinants of metabolic shifts are difficult to resolve. The bacterial biofilm matrix provides the structural and functional support that distinguishes this state from free-living bacterial cells. Here, we show that the biofilm matrix provides access to resources necessary for metabolism and growth which are otherwise inaccessible in the planktonic state. Our data shows that in the absence of heme, components ofEnterococcus faecalisrespiration (l-lactate dehydrogenase and acetaldehyde dehydrogenase) may function as initiators of EET through the cytoplasmic membrane quinone pool and utilize matrix-associated iron to carry out EET. The presence of iron resources within the biofilm matrix leads to enhanced biofilm growth.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
