Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/130146...
Article . 2017 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1128/mbio.0...
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

Extracellular Electron Transfer PowersEnterococcus faecalisBiofilm Metabolism

Authors: Keogh, Damien; Lam, Ling Ning; Doyle, Lucinda E.; Matysik, Artur; Pavagadhi, Shruti; Umashankar, Shivshankar; Dale, Jennifer L.; +6 Authors

Extracellular Electron Transfer PowersEnterococcus faecalisBiofilm Metabolism

Abstract

AbstractEnterococci are important human commensals and significant opportunistic pathogens associated with endocarditis, urinary tract infections, wound and surgical site infections, and medical device associated infections. These infections often become chronic upon the formation of biofilm. The biofilm matrix establishes properties that distinguish this state from free-living bacterial cells and increase tolerance to antimicrobial interventions. The metabolic versatility of the Enterococci is reflected in the diversity and complexity of environments and communities in which they thrive. Understanding metabolic factors governing colonization and persistence in different host niches can reveal factors influencing the transition from commensal to opportunistic pathogen. Here, we report a new form of iron-dependent metabolism forEnterococcus faecaliswhere, in the absence of heme, respiration components can be utilised for extracellular electron transfer (EET). Iron augmentsE. faecalisbiofilm growth and generates alterations in biofilm matrix, cell spatial distribution, and biofilm matrix properties. We identify the genes involved in iron-augmented biofilm growth and show that it occurs by promoting EET to iron within biofilm.SignificanceBacterial metabolic versatility is often key in dictating the outcome of host-pathogen interactions, yet determinants of metabolic shifts are difficult to resolve. The bacterial biofilm matrix provides the structural and functional support that distinguishes this state from free-living bacterial cells. Here, we show that the biofilm matrix provides access to resources necessary for metabolism and growth which are otherwise inaccessible in the planktonic state. Our data shows that in the absence of heme, components ofEnterococcus faecalisrespiration (l-lactate dehydrogenase and acetaldehyde dehydrogenase) may function as initiators of EET through the cytoplasmic membrane quinone pool and utilize matrix-associated iron to carry out EET. The presence of iron resources within the biofilm matrix leads to enhanced biofilm growth.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid