
ABSTRACTHow species arise is a fundamental question in biology. Species can be defined as populations of interbreeding individuals that are reproductively isolated from other such populations. Therefore, understanding how reproductive barriers evolve between populations is essential for understanding the process of speciation. Hybrid incompatibility (e.g. hybrid sterility and lethality) is a common and strong reproductive barrier in nature, but few studies have molecularly identified its genetic basis. Here we report a lethal incompatibility between two wild-isolates of the nematodeCaenorhabditis nouraguensis.Hybrid inviability results from the incompatibility between a maternally inherited cytoplasmic factor from each strain and a recessive nuclear locus from the other. We have excluded the possibility that maternally inherited endosymbiotic bacteria cause the incompatibility by treating both strains with tetracycline and show that hybrid death is unaffected. Furthermore, cytoplasmic-nuclear incompatibility commonly occurs between other wild-isolates, indicating that this is a significant reproductive barrier withinC. nouraguensis. We hypothesize that the maternally inherited cytoplasmic factor is the mitochondrial genome and that mitochondrial dysfunction underlies hybrid death. This system has the potential to shed light on the dynamics of divergent mitochondrial-nuclear coevolution and its role in promoting speciation.
Cell Nucleus, Male, Bacteria, Models, Genetic, cytoplasmic–nuclear incompatibility, QH426-470, Investigations, Chromosomes, mitochondria, speciation, Genetic Loci, Genetics, Caenorhabditis, Embryo Loss, Animals, Hybridization, Genetic, Female, Symbiosis, hybrid incompatibility, Alleles
Cell Nucleus, Male, Bacteria, Models, Genetic, cytoplasmic–nuclear incompatibility, QH426-470, Investigations, Chromosomes, mitochondria, speciation, Genetic Loci, Genetics, Caenorhabditis, Embryo Loss, Animals, Hybridization, Genetic, Female, Symbiosis, hybrid incompatibility, Alleles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
