<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1101/059493
AbstractThe degree of order versus randomness in mammalian cortical circuits has been the subject of much discussion. Previous reports showed that at a large scale there is smooth tonotopy in mouse auditory cortex, while at the single neuron level the representation is the traditional “salt and pepper” configuration attributed to rodent cortex. Here we show that at the micro columnar scale we find a large variety of response profiles, but neurons tend to share similar preference in terms of frequency, bandwidth and latency. However, this smooth representation was fractured and large differences were possible between neighbouring neurons. Despite the tendency of most groups of neurons to operate redundantly, high information gains were achieved between cells that had a high signal correlation. Connectivity between neurons was highly non-random, in agreement with a previous in-vitro report from layer five. Our results suggest the existence of functional clusters, connecting neighbouring mini-columns. This supports the idea of a “salt and pepper” configuration at the level of functional clusters of neurons rather than single units.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |