Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

Hippocampal motifs

Authors: Aghajan, Zahra; Acharya, Lavanya; Cushman, Jesse; Vuong, Cliff; Moore, Jason; Mehta, Mayank;
Abstract

Dorsal Hippocampal neurons provide an allocentric map of space1, characterized by three key properties. First, their firing is spatially selective1–3, termed a rate code. Second, as animals traverse through place fields, neurons sustain elevated firing rates for long periods, however this has received little attention. Third the theta-phase of spikes within this sustained activity varies with animal’s location, termed phase-precession or a temporal code4–10. The precise relationship between these properties and the mechanisms governing them are not understood, although distal visual cues (DVC) are thought to be sufficient to reliably elicit them2,3. Hence, we measured rat CA1 neurons’ activity during random foraging in two-dimensional VR—where only DVC provide consistent allocentric location information— and compared it with their activity in real world (RW). Surprisingly, we found little spatial selectivity in VR. This is in sharp contrast to robust spatial selectivity commonly seen in one-dimensional RW and VR7–11, or two-dimensional RW1–3. Despite this, neurons in VR generated approximately two-second long phase precessing spike sequences, termed “hippocampal motifs”. Motifs, and “Motif-fields”, an aggregation of all motifs of a neuron, had qualitatively similar properties including theta-scale temporal coding in RW and VR, but the motifs were far less spatially localized in VR. These results suggest that intrinsic, network mechanisms generate temporally coded hippocampal motifs, which can be dissociated from their spatial selectivity. Further, DVC alone are insufficient to localize motifs spatially to generate a robust rate code.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green