Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phase variation in Bartonella henselae

Authors: Pierre, Kyme; Belinda, Dillon; Jonathan, Iredell;

Phase variation in Bartonella henselae

Abstract

Bartonella henselae is a fastidious, Gram-negative bacterial pathogen of cats and humans. Previous workers have shown that serial passage in vitro leads to attenuation of virulence-associated attributes such as expression of pili, invasion of human epithelial cell lines and the stimulation of endothelial cell proliferation. In contrast to the published data, it was found that pilin expression is frequently preserved in organisms which have undergone phase variation in vitro. Transition from a slow-growing, dry agar-pitting (DAP) to a faster-growing, smooth non-agar-pitting (SNP) form appears to occur predictably and may reflect competition between two populations growing at different rates. Better survival of the slower-growing (DAP) form may explain its relatively easy retrieval from piliated SNP populations allowed to age on solid media. Pilin expression is associated with auto-agglutination in liquid suspension or broth cultures, and appears to be necessary but not sufficient for expression of the agar-pitting phenotype and for the formation of biofilms. Outer-membrane protein variation is seen in association with phase variation, but lipopolysaccharide expression is preserved in piliated as well as extensively passaged non-piliated isolates. The EagI/HhaI infrequent restriction site-PCR fingerprint, which has been previously used to discriminate between serotypes Marseille and Houston, is shown to alter with phase variation in vitro, and there is evidence that genetic change accompanies these events. The extent of genetic and phenotypic variability of phase-variant B. henselae has previously been underestimated. It may lead to new insights into the pathogenicity of this organism, and must be considered when interpreting data arising from such studies.

Related Organizations
Keywords

Lipopolysaccharides, Bartonella henselae, Virulence, Cat-Scratch Disease, Cat Diseases, Culture Media, Phenotype, Biofilms, Cats, Animals, Humans, Fimbriae Proteins, Bacterial Outer Membrane Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!