Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbiology
Article
License: CC BY
Data sources: UnpayWall
Microbiology
Article . 2009 . Peer-reviewed
Data sources: Crossref
Microbiology
Article . 2009
versions View all 2 versions
addClaim

Pumping iron: mechanisms for iron uptake by Campylobacter

Authors: Miller, CE; Williams, PH; Ketley, JM;

Pumping iron: mechanisms for iron uptake by Campylobacter

Abstract

Campylobacter requires iron for successful colonization of the host. In the last 7 years, a wealth of data has been generated allowing detailed molecular characterization of Campylobacter iron-uptake systems. Several exogenous siderophores have been identified as sources of ferric iron for Campylobacter. Ferri-enterochelin uptake requires both the outer-membrane receptor protein CfrA and the inner-membrane ABC transporter system CeuBCDE. Ferrichrome has been shown to support growth of some Campylobacter jejuni strains and the presence of homologues of Escherichia coli fhuABD genes was proposed; the Cj1658–Cj1663 system appears to be involved in the uptake of ferri-rhodotorulic acid. In addition to siderophores, the importance of host iron sources was highlighted by recent studies demonstrating that C. jejuni can exploit haem compounds and the transferrins using ChuABCDZ and Cj0173c–Cj0178, respectively. An additional putative receptor, Cj0444, present in some, but not all, strains has not yet been characterized. Following diffusion through the outer membrane, inner-membrane transport of ferrous iron can occur via the FeoB protein. While it may be assumed that all systems are not essential, there is growing evidence supporting the need for multiple iron-uptake systems for successful host colonization by Campylobacter. In light of this, comparative molecular characterization of iron systems in all Campylobacter strains is necessary to gain further insight into the pathogenesis of members of this genus.

Country
United Kingdom
Related Organizations
Keywords

570, Iron, Membrane Transport Proteins, Biological Transport, Campylobacter

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
gold