
pmid: 3443852
Azotobacter vinelandii OP which had been naturally induced to competence by growth in iron- and molybdenum-limited medium was transformed with the broad-host-range cloning vector pKT210. However, the transformation frequency at nearly saturating levels of DNA was 1000-fold lower for pKT210 than for a single chromosomal DNA marker (nif+). Plasmid- and chromosomal-DNA-mediated transformation events were competitive, magnesium-dependent, 42 degrees C-sensitive processes specific to double-stranded DNA, suggesting a common mechanism of DNA binding and uptake. The low frequency of plasmid transformation was not related to restriction of transforming DNA or to the growth period allowed for phenotypic expression. Covalently-closed-circular and open-circular forms of pKT210 transformed cells equally well whereas EcoRI- or HindIII-linearized pKT210 transformed cells with two to three times greater efficiency. Genetic transformation was enhanced 10- to 50-fold when pKT210 contained an insert fragment of A. vinelandii nif DNA, indicating that A. vinelandii possessed a homology-facilitated transformation system. However, all transformants failed to maintain the plasmid-encoded antibiotic resistance determinants, and extrachromosomal plasmid DNA was not recovered from these cells. Flush-ended pKT210 was not active in transformation; however, competent cells were transformed to Nif+ by HincII-digested plasmid DNA containing the cloned A. vinelandii nif-10 marker.
DNA, Bacterial, Microscopy, Electron, Azotobacter, Transformation, Bacterial, Chromosomes, Bacterial, Plasmids
DNA, Bacterial, Microscopy, Electron, Azotobacter, Transformation, Bacterial, Chromosomes, Bacterial, Plasmids
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
