Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INTERNATIONAL JOURNA...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of nine species of the Chlamydiaceae using PCR-RFLP

Authors: Karin D. E. Everett; Arthur A. Andersen;

Identification of nine species of the Chlamydiaceae using PCR-RFLP

Abstract

The family Chlamydiaceae contains two genera and nine species. Rapid and easy identification of these species is essential for taxonomic, epidemiological and clinical determinations. Currently, DNA sequence analysis is the only accepted method that decisively distinguishes all nine species. In this study, a simple and rapid PCR-RFLP procedure was developed by which laboratory-cultured chlamydial specimens could be identified. To accomplish this, conserved oligonucleotide primers and restriction sites were deduced from 16S and 23S rRNA sequence data from > 50 chlamydial strains representing all nine species. DNA from 25 previously characterized chlamydial strains were tested with these primers and restriction enzymes. All nine chlamydial species were reliably distinguished in the tests. The procedure was optimized by adjusting the annealing temperature using both a standard and a heat-activated DNA polymerase to reduce mismatch PCR amplification of mycoplasmas and other bacteria. The result was that a PCR method for species identification of chlamydial isolates and for distinguishing mycoplasmas and chlamydiae was created. This method can be used to rapidly identify known species of the family Chlamydiaceae.

Keywords

DNA, Bacterial, Chlamydiaceae, Restriction Mapping, Genes, rRNA, Chlamydiaceae Infections, Sequence Analysis, DNA, DNA, Ribosomal, Polymerase Chain Reaction, RNA, Ribosomal, 23S, Species Specificity, RNA, Ribosomal, 16S, Animals, Humans, Polymorphism, Restriction Fragment Length

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
bronze