Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Philosophical Transa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Philosophical Transactions of the Royal Society B Biological Sciences
Article . 2001 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Historical background

Authors: M A, Epstein;

Historical background

Abstract

The persisting ancient view of cancer as a contagious disease ended with 19th century scientific investigations which seemed to show it was not. The resulting dogma against an infectious cause for cancer produced great prejudice in the scientific community against the first report of an oncogenic virus by Rous early in the 20th century and, even in the 1950s, against Gross's finding of a murine leukaemia virus and a murine virus causing solid tumours. The Lucké frog renal carcinoma virus was the first cancer–associated herpesvirus. Intriguingly, an environmental factor, ambient temperature, determines virus genome expression in the poikilothermic frog cells. Although an α–herpesvirus, Marek's disease virus of chickens shares some aspects of biological behaviour with Epstein–Barr virus (EBV) of man. Very significantly, its lymphomas are the first naturally occurring malignancy to be controlled by an antiviral vaccine, with implications for human virus–associated cancers. The circumstances and climate of opinion in which successive γ–herpesviruses were discovered are described. The identification of EBV involved two unconventionalities: its finding in cultured Burkitt's lymphoma cells when no human lymphoid cell had ever been maintained in vitro , and its recognition in the absence of biological activity by the then new technique of electron microscopy. These factors engendered hostility to its acceptance as a new human tumour–associated virus. The EBV–like agents of Old World apes and monkeys and the T–lymphotropic γ–herpesviruses of New World monkeys were found at about the same time, not long after the discovery of EBV. For many years these were thought to be the only γ–herpesviruses of non–human primates; however, very recently B–lymphotropic EBV–like agents have been identified in New World species as well. Mouse herpesvirus 68 came to light by chance during a search for arboviruses and has become important as a laboratory model because of its close genetic relatedness to EBV and its comparable biological behaviour. The discovery of Kaposi's sarcoma–associated herpesvirus six years ago was made using unconventional new methods, but, unlike with EBV 30 years before, this did not hinder its acceptance. This contrast is discussed in the context of the great progress in human tumour virology which has been made in recent years.

Related Organizations
Keywords

Viral Vaccines, History, 20th Century, Birds, Tumor Virus Infections, Neoplasms, Virology, Animals, Humans, Oncogenic Viruses, Herpesvirus 2, Gallid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze