Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Philosophical Transa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Philosophical Transactions of the Royal Society B Biological Sciences
Article . 2000 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
versions View all 2 versions
addClaim

Comparative analyses for adaptive radiations

Authors: P H, Harvey; A, Rambaut;

Comparative analyses for adaptive radiations

Abstract

Biologists generally agree that most morphological variation between closely related species is adaptive. The most common method of comparative analysis to test for co–evolved character variation is based on a Brownian–motion model of character evolution. If we are to test for the evolution of character covariation, and we believe that characters have evolved adaptively to fill niches during an adaptive radiation, then it is appropriate to employ appropriate models for character evolution. We show here that under several models of adaptive character evolution and coevolution during an adaptive radiation, which result in closely related species being more similar to each other than to more distantly related species, cross–species analyses are statistically more appropriate than contrast analyses. If the evolution of some traits fits the Brownian–motion model, while others evolve to fill niches during an adaptive radiation, it might be necessary to identify the number of relevant niche dimensions and the modes of character evolution before deciding on appropriate statistical procedures. Alternatively, maximum–likelihood procedures might be used to determine appropriate transformations of phylogenetic branch lengths that accord with particular models of character evolution.

Related Organizations
Keywords

Phenotype, Adaptation, Physiological, Biological Evolution, Models, Biological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 10%
Top 1%
Top 10%
bronze