
pmid: 2858882
In primates, the principal nociceptive pathways ascend in the anterolateral quadrant of the spinal cord. Among these, the spinothalamic tract (s.t.t.) is the best studied. Cells in Rexed’s laminae I and V project to the ventro-posterolateral (v.p.l.) thalamic nucleus. Other cells in the same and deeper laminae terminate in the intralaminar complex. Spinothalamic tract cells may be nociceptive-specific or multireceptive. Those ending in v.p.l. have restricted, contralateral receptive fields, whereas those projecting to the intralaminar region often have large, bilateral receptive fields. Spinoreticular tract (s.r.t.) cells are concentrated in laminae VII and VIII and may be nociceptive. It is proposed that the s.t.t. contributes to sensory-discriminative processing of pain and that the s.t.t. and s.r.t. play a role in the motivational-affective components of pain. Alternative nociceptive pathways are the spinocervical and postsynaptic dorsal column tracts.
Central Nervous System, Afferent Pathways, Spinothalamic Tracts, Reticular Formation, Pain, Rats, Spinal Cord, Mesencephalon, Cats, Animals, Humans
Central Nervous System, Afferent Pathways, Spinothalamic Tracts, Reticular Formation, Pain, Rats, Spinal Cord, Mesencephalon, Cats, Animals, Humans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 70 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
