
pmid: 2858880
This paper reviews advances in our knowledge on the physiological properties of human nociceptors and their capacity to signal pain. Conventional microneurography was used in combination with intraneural microstimulation in subjects who estimated the magnitude of pain from nociceptor stimulation. The experimental evidence favours the notion that C polymodal nociceptors can provide a peripheral neuronal basis for determination of heat pain threshold and also an essential peripheral code for suprathreshold magnitude judgements of heat pain. Furthermore, sensitized C polymodal nociceptors can contribute to hyperalgesia after a mild heat injury to hairy skin. Temporal summation is documented for dull, delayed C fibre pain, which is different in quality and less accurately projected than the fast, sharp pain from high-threshold A δ nociceptors. A segmental organization is shown for projected and referred pain from deep structures. Examples are given of central inhibition of pain by a prostaglandin synthetase inhibitor, and by physical manoeuvres such as vibration and cooling. Recent reports on microneurographic findings after nerve injury indicate that the technique may be useful for future studies on pathophysiological pain mechanisms.
Macaca fascicularis, Nerve Fibers, Sensory Thresholds, Psychophysics, Animals, Humans, Nociceptors, Pain, Neural Inhibition, Nerve Fibers, Myelinated
Macaca fascicularis, Nerve Fibers, Sensory Thresholds, Psychophysics, Animals, Humans, Nociceptors, Pain, Neural Inhibition, Nerve Fibers, Myelinated
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 59 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
