
Complexity science provides a powerful framework for understanding physical, biological and social systems, and network analysis is one of its principal tools. Since many complex systems exhibit multilateral interactions that change over time, in recent years, network scientists have become increasingly interested in modelling and measuring dynamic networks featuring higher-order relations . At the same time, while network analysis has been more widely adopted to investigate the structure and evolution of law as a complex system, the utility of dynamic higher-order networks in the legal domain has remained largely unexplored. Setting out to change this, we introduce temporal hypergraphs as a powerful tool for studying legal network data. Temporal hypergraphs generalize static graphs by (i) allowing any number of nodes to participate in an edge and (ii) permitting nodes or edges to be added, modified or deleted. We describe models and methods to explore legal hypergraphs that evolve over time and elucidate their benefits through case studies on legal citation and collaboration networks that change over a period of more than 70 years. Our work demonstrates the potential of dynamic higher-order networks for studying complex legal systems, and it facilitates further advances in legal network analysis. This article is part of the theme issue ‘A complexity science approach to law and governance’.
hypergraphs, legal complexity, temporal networks, higher-order networks, Articles, Science and Technology Law, complex systems, legal networks, 004
hypergraphs, legal complexity, temporal networks, higher-order networks, Articles, Science and Technology Law, complex systems, legal networks, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
