Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Philosophical Transa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2020
Data sources: HAL-INSU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convective storms and atmospheric vertical structure in Uranus and Neptune

Authors: Guillot, Tristan; Hueso, R.; Sánchez-Lavega, A.;

Convective storms and atmospheric vertical structure in Uranus and Neptune

Abstract

The ice giants Uranus and Neptune have hydrogen-based atmospheres with several constituents that condense in their cold upper atmospheres. A small number of bright cloud systems observed in both planets are good candidates for moist convective storms, but their observed properties (size, temporal scales and cycles of activity) differ from moist convective storms in the gas giants. These clouds and storms are possibly due to methane condensation and observations also suggest deeper clouds of hydrogen sulfide (H 2 S) at depths of a few bars. Even deeper, thermochemical models predict clouds of ammonia hydrosulfide (NH 4 SH) and water at pressures of tens to hundreds of bars, forming extended deep weather layers. Because of hydrogen’s low molecular weight and the high abundance of volatiles, their condensation imposes a strongly stabilizing vertical gradient of molecular weight larger than the equivalent one in Jupiter and Saturn. The resulting inhibition of vertical motions should lead to a moist convective regime that differs significantly from the one occurring on nitrogen-based atmospheres like those of Earth or Titan. As a consequence, the thermal structure of the deep atmospheres of Uranus and Neptune is not well understood. Similar processes might occur at the deep water cloud of Jupiter in Saturn, but the ice giants offer the possibility to study these physical aspects in the upper methane cloud layer. A combination of orbital and in situ data will be required to understand convection and its role in atmospheric dynamics in the ice giants, and by extension, in hydrogen atmospheres including Jupiter, Saturn and giant exoplanets. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.

Keywords

Earth and Planetary Astrophysics (astro-ph.EP), [SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR], [SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP], FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green
bronze