
pmid: 21727116
In this brief review, we explain the theoretical basis for the notion that spin-transfer torques (STTs) and giant-magnetoresistance effects can, in principle, occur in circuits containing only normal and antiferromagnetic (AFM) materials, and for the notion that antiferromagnets can play a role in STT phenomena in circuits containing both ferromagnetic and AFM elements. We review the experimental literature that provides partial evidence for these AFM spintronic effects but demonstrates that, like exchange-bias effects, they are sensitive to details of interface structure that are not always under experimental control. Finally, we speculate briefly on some strategies that might advance progress.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 285 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
