
pmid: 18990665
This study provides a numerical characterization of the basin of attraction of the laminar Hagen–Poiseuille flow by measuring the minimal amplitude of a perturbation required to trigger transition. For pressure-driven pipe flow, the analysis presented here covers autonomous and impulsive scenarios where either the flow is perturbed with an initial disturbance with a well-defined norm or perturbed by means of local impulsive forcing that mimics injections through the pipe wall. In both the cases, the exploration is carried out for a wide range of Reynolds numbers by means of a computational method that numerically resolves the transitional dynamics. For , the present work provides critical amplitudes that decay as Re −3/2 and Re −1 for the autonomous and impulsive scenarios, respectively. For Re =2875, accurate threshold amplitudes are found for constant mass-flux pipe by means of a shooting method that provides critical trajectories that never relaminarize or trigger transition. These transient states are used as initial guesses in a damped Newton–Krylov method formulated to find periodic travelling wave solutions that either travel downstream or exhibit a helicoidal advection.
pipe flow, Newton-Krylov methods, travelling waves, critical threshold, transition to turbulence, Transition to turbulence
pipe flow, Newton-Krylov methods, travelling waves, critical threshold, transition to turbulence, Transition to turbulence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
