
There is abundant evidence that heating processes in the central regions of elliptical galaxies have both prevented large–scale cooling flows and assisted in the expulsion of metal rich gas. We now know that each such spheroidal system harbours in its core a massive black hole weighing ca. 0.13% of the mass in stars and also know that energy was emitted by each of these black holes with an efficiency exceeding 10% of its rest mass. Since, if only 0.5% of that radiant energy were intercepted by the ambient gas, its thermal state would be drastically altered, it is worth examining in detail the interaction between the out–flowing radiation and the equilibrium or inflowing gas. On the basis of detailed hydrodynamic computations we find that relaxation oscillations are to be expected with the radiative feedback quite capable of regulating both the growth of the central black hole and also the density and thermal state of the gas in the galaxy. Mechanical input of energy by jets may assist or dominate over these radiative effects.We propose specific observational tests to identify systems which have experienced strong bursts of radiative heating from their central black holes.
Hot Temperature, Radiation, Time Factors, Extraterrestrial Environment, Astronomy, Physics, X-Rays, Astrophysics (astro-ph), FOS: Physical sciences, Models, Theoretical, Astrophysics, Physical Phenomena, Gases
Hot Temperature, Radiation, Time Factors, Extraterrestrial Environment, Astronomy, Physics, X-Rays, Astrophysics (astro-ph), FOS: Physical sciences, Models, Theoretical, Astrophysics, Physical Phenomena, Gases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
